7,529 research outputs found

    Effects of dynamic aeroelasticity on handling qualities and pilot rating

    Get PDF
    Pilot performance parameters, such as pilot ratings, tracking errors, and pilot comments were determined for a longitudinal pitch tracking task using a large, flexible bomber with parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes. This pitch tracking task was programmed on a fixed base simulator with an electronic attitude-director display of pitch command, pitch angle, and pitch error. Low frequency structural flexibility significantly affects the handling qualities and pilot ratings in the task evaluated

    Low temperature dielectric anomalies in HoMnO_3: The complex phase diagram

    Full text link
    The dielectric constant of multiferroic hexagonal HoMnO_3 exhibits an unprecedented diversity of anomalies at low temperatures (1.8 K< T <10 K) and under external magnetic fields related to magnetic phase transitions in the coupled system of Ho moments, Mn spins, and ferroelectric polarization. The derived phase diagram is far more complex than previously assumed including reentrant phases, phase transitions with distinct thermal and field hysteresis, as well as several multicritical points. Magnetoelastic interactions introduce lattice anomalies at the magnetic phase transitions. The re-evaluation of the T-H phase diagram of HoMnO_3 is demanded.Comment: 12 pages, 3 figure

    Strong spin-lattice coupling in multiferroic HoMnO3_{3}: Thermal expansion anomalies and pressure effect

    Full text link
    Evidence for a strong spin-lattice coupling in multiferroic HoMnO_3 is derived from thermal expansion measurements along a- and c-axis. The magnetoelastic effect results in sizable anomalies of the thermal expansivities at the antiferromagnetic (T_N) and the spin rotation (T_{SR}) transition temperatures as well as in a negative c-axis expansivity below room temperature. The coupling between magnetic orders and dielectric properties below T_N is explained by the lattice strain induced by the magnetoelastic effect. At T_{SR} various physical quantities show discontinuities that are thermodynamically consistent with a first order phase transition

    Pressure-Temperature Phase Diagram of Multiferroic Ni3V2O8Ni_3V_2O_8

    Full text link
    The pressure-temperature phase diagram of multiferroic Ni3V2O8Ni_3V_2O_8 is investigated for hydrostatic pressures up to 2 GPa. The stability range of the ferroelectric phase associated with the incommensurate helical spin order is reduced by pressure and ferroelectricity is completely suppressed at the critical pressure of 1.64 GPa at 6.2 K. Thermal expansion measurements at ambient pressure show strong step-like anomalies of the lattice parameters associated with the lock-in transition into the commensurate paraelectric phase. The expansion anomalies are highly anisotropic, the related volume change is consistent with the high-pressure phase diagram

    Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT

    Full text link
    The anti--de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Ho\v{r}ava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attentions due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Ho\v{r}ava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Ho\v{r}ava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in λ=1\lambda=1 Ho\v{r}ava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter ϵ\epsilon close to unity. Sufficiently charged flat black holes for ϵ\epsilon close to unity, and sufficiently charged positively curved black holes with ϵ\epsilon close to zero, are also unstable. The implication to the Ho\v{r}ava-Lifshitz holographic superconductor is discussed.Comment: 15 pages, 6 figures. Updated version accepted by Phys. Rev. D, with corrections to various misprints. References update

    Marginally Trapped Surfaces in the Nonsymmetric Gravitational Theory

    Full text link
    We consider a simple, physical approach to the problem of marginally trapped surfaces in the Nonsymmetric Gravitational Theory (NGT). We apply this approach to a particular spherically symmetric, Wyman sector gravitational field, consisting of a pulse in the antisymmetric field variable. We demonstrate that marginally trapped surfaces do exist for this choice of initial data.Comment: REVTeX 3.0 with epsf macros and AMS symbols, 3 pages, 1 figur

    A simple high-sensitivity technique for purity analysis of xenon gas

    Full text link
    We report on the development and performance of a high-sensitivity purity-analysis technique for gaseous xenon. The gas is sampled at macroscopic pressure from the system of interest using a UHV leak valve. The xenon present in the sample is removed with a liquid-nitrogen cold trap, and the remaining impurities are observed with a standard vacuum mass-spectroscopy device. Using calibrated samples of xenon gas spiked with known levels of impurities, we find that the minimum detectable levels of N2, O2, and methane are 1 ppb, 160 ppt, and 60 ppt respectively. This represents an improvement of about a factor of 10,000 compared to measurements performed without a coldtrap.Comment: 20 pages, 5 figure

    Topological twisted sigma model with H-flux revisited

    Full text link
    In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the B-field. We then discuss the topological feature of the model.Comment: 16 pages. Appendix adde

    Magnetoelectric Effect and Spontaneous Polarization in HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4

    Full text link
    The thermodynamic, magnetic, dielectric, and magnetoelectric properties of HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 are investigated. Both compounds show a second order Ne\'{e}l transition above 30 K and a first order spin reorientation transition below 10 K. HoFe3_3(BO3_3)4_4 develops a spontaneous electrical polarization below the Ne\'{e}l temperature (TN_N) which is diminished in external magnetic fields. No magnetoelectric effect could be observed in HoFe3_3(BO3_3)4_4. In contrast, the solid solution Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 exhibits both, a spontaneous polarization below TN_N and a magnetoelectric effect at higher fields that extends to high temperatures. The superposition of spontaneous polarization, induced by the internal magnetic field in the ordered state, and the magnetoelectric polarizations due to the external field results in a complex behavior of the total polarization measured as a function of temperature and field.Comment: 12 pages, 15 figure
    corecore